{ "id": "2408.08472", "version": "v1", "published": "2024-08-16T01:15:20.000Z", "updated": "2024-08-16T01:15:20.000Z", "title": "Two constructions of quaternary Legendre pairs of even length", "authors": [ "Jonathan Jedwab", "Thomas Pender" ], "comment": "15 pages", "categories": [ "math.CO" ], "abstract": "We give the first general constructions of even length quaternary Legendre pairs: there is a quaternary Legendre pair of length $(q-1)/2$ for every prime power $q$ congruent to $1$ modulo $4$, and there is a quaternary Legendre pair of length $2p$ for every odd prime $p$ for which $2p-1$ is a prime power.", "revisions": [ { "version": "v1", "updated": "2024-08-16T01:15:20.000Z" } ], "analyses": { "subjects": [ "05B20", "05B30" ], "keywords": [ "prime power", "length quaternary legendre pairs", "first general constructions", "odd prime" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }