{ "id": "2408.08175", "version": "v1", "published": "2024-08-15T14:23:14.000Z", "updated": "2024-08-15T14:23:14.000Z", "title": "The geometric fundamental group of the affine line over a finite field", "authors": [ "Henrik Russell" ], "comment": "33 pages", "categories": [ "math.AG", "math.NT" ], "abstract": "The affine line and the punctured affine line over a finite field F are taken as benchmarks for the problem of describing geometric \\'etale fundamental groups. To this end, using a reformulation of Tannaka duality we construct for a projective variety X a (non-commutative) universal affine pro-algebraic group Lu(X), such that for any given affine subvariety U of X any finite and \\'etale Galois covering of U over F is a pull-back of a Galois covering of a quotient Lu(X,U) of Lu(X). Then the geometric fundamental group of U is a completion of the k-points of Lu(X,U), where k is an algebraic closure of F. We obtain explicit descriptions of the universal affine groups Lu(X,U) for U the affine line and the punctured affine line over F.", "revisions": [ { "version": "v1", "updated": "2024-08-15T14:23:14.000Z" } ], "analyses": { "subjects": [ "14H30", "14L17", "14G15" ], "keywords": [ "geometric fundamental group", "finite field", "punctured affine line", "universal affine pro-algebraic group lu", "geometric etale fundamental groups" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }