{ "id": "2408.07775", "version": "v1", "published": "2024-08-14T19:05:55.000Z", "updated": "2024-08-14T19:05:55.000Z", "title": "Sharp quantitative stability estimates for critical points of fractional Sobolev inequalities", "authors": [ "Haixia Chen", "Seunghyeok Kim", "Juncheng Wei" ], "comment": "36 pages; comments welcome", "categories": [ "math.AP" ], "abstract": "By developing a unified approach based on integral representations, we establish sharp quantitative stability estimates for critical points of the fractional Sobolev inequalities induced by the embedding $\\dot{H}^s({\\mathbb R}^n) \\hookrightarrow L^{2n \\over n-2s}({\\mathbb R}^n)$ in the whole range of $s \\in (0,\\frac{n}{2})$.", "revisions": [ { "version": "v1", "updated": "2024-08-14T19:05:55.000Z" } ], "analyses": { "keywords": [ "fractional sobolev inequalities", "critical points", "establish sharp quantitative stability estimates", "integral representations", "unified approach" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable" } } }