{ "id": "2408.07631", "version": "v1", "published": "2024-08-14T15:57:28.000Z", "updated": "2024-08-14T15:57:28.000Z", "title": "Counting rational points on Hirzebruch-Kleinschmidt varieties over global function fields", "authors": [ "Sebastián Herrero", "Tobías Martínez", "Pedro Montero" ], "comment": "arXiv admin note: text overlap with arXiv:2407.19408", "categories": [ "math.NT", "math.AG" ], "abstract": "Inspired by Bourqui's work on anticanonical height zeta functions on Hirzebruch surfaces, we study height zeta functions of split toric varieties with Picard rank 2 over global function fields, with respect to height functions associated with big metrized line bundles. We show that these varieties can be naturally decomposed into a finite disjoint union of subvarieties, where precise analytic properties of the corresponding height zeta functions can be given, allowing for a finer inspection of the asymptotic number of rational points of bounded height on each subvariety.", "revisions": [ { "version": "v1", "updated": "2024-08-14T15:57:28.000Z" } ], "analyses": { "subjects": [ "14G05", "11G50", "11M41", "14M25", "11G35" ], "keywords": [ "global function fields", "counting rational points", "hirzebruch-kleinschmidt varieties", "study height zeta functions", "corresponding height zeta functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }