{ "id": "2408.07398", "version": "v1", "published": "2024-08-14T09:18:10.000Z", "updated": "2024-08-14T09:18:10.000Z", "title": "Proximality, stability, and central limit theorem for random maps on an interval", "authors": [ "Sander C. Hille", "Katarzyna Horbacz", "Hanna Oppelmayer", "Tomasz Szarek" ], "categories": [ "math.DS", "math.FA", "math.PR" ], "abstract": "Stochastic dynamical systems consisting of non-invertible continuous maps on an interval are studied. It is proved that if they satisfy the recently introduced so-called $\\mu$-injectivity and some mild assumptions, then proximality, asymptotic stability and a central limit theorem hold.", "revisions": [ { "version": "v1", "updated": "2024-08-14T09:18:10.000Z" } ], "analyses": { "subjects": [ "37A50", "37A25", "60F05", "60G52", "60G53", "60G10" ], "keywords": [ "random maps", "proximality", "central limit theorem hold", "stochastic dynamical systems", "mild assumptions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }