{ "id": "2408.07182", "version": "v1", "published": "2024-08-13T19:50:36.000Z", "updated": "2024-08-13T19:50:36.000Z", "title": "Proximal random reshuffling under local Lipschitz continuity", "authors": [ "Cedric Josz", "Lexiao Lai", "Xiaopeng Li" ], "categories": [ "math.OC" ], "abstract": "We study proximal random reshuffling for minimizing the sum of locally Lipschitz functions and a proper lower semicontinuous convex function without assuming coercivity or the existence of limit points. The algorithmic guarantees pertaining to near approximate stationarity rely on a new tracking lemma linking the iterates to trajectories of conservative fields. One of the novelties in the analysis consists in handling conservative fields with unbounded values.", "revisions": [ { "version": "v1", "updated": "2024-08-13T19:50:36.000Z" } ], "analyses": { "keywords": [ "local lipschitz continuity", "proper lower semicontinuous convex function", "conservative fields", "lipschitz functions", "study proximal random reshuffling" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }