{ "id": "2408.07012", "version": "v1", "published": "2024-08-13T16:20:32.000Z", "updated": "2024-08-13T16:20:32.000Z", "title": "An LLL algorithm with symmetries", "authors": [ "Beth Romano", "Jack A. Thorne" ], "categories": [ "math.NT" ], "abstract": "We give a generalisation of the Lenstra-Lenstra-Lov\\'asz (LLL) lattice-reduction algorithm that is valid for an arbitrary (split, semisimple) reductive group $G$. This can be regarded as `lattice reduction with symmetries'. We make this algorithm explicit for the classical groups $G = \\mathrm{Sp}_{2g}$, $\\mathrm{SO}_{2g}$, and for the exceptional group $G = G_2$.", "revisions": [ { "version": "v1", "updated": "2024-08-13T16:20:32.000Z" } ], "analyses": { "keywords": [ "lll algorithm", "symmetries", "lattice reduction", "exceptional group", "lattice-reduction algorithm" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }