{ "id": "2408.06703", "version": "v1", "published": "2024-08-13T07:58:08.000Z", "updated": "2024-08-13T07:58:08.000Z", "title": "New Families of tripartite graphs with local antimagic chromatic number 3", "authors": [ "Gee-Choon Lau", "Wai Chee Shiu" ], "comment": "arXiv admin note: text overlap with arXiv:2408.04942", "categories": [ "math.CO" ], "abstract": "For a graph $G(V,E)$ of size $q$, a bijection $f : E(G) \\to [1,q]$ is a local antimagc labeling if it induces a vertex labeling $f^+ : V(G) \\to \\mathbb{N}$ such that $f^+(u) \\ne f^+(v)$, where $f^+(u)$ is the sum of all the incident edge label(s) of $u$, for every edge $uv \\in E(G)$. In this paper, we make use of matrices of fixed sizes to construct several families of infinitely many tripartite graphs with local antimagic chromatic number 3.", "revisions": [ { "version": "v1", "updated": "2024-08-13T07:58:08.000Z" } ], "analyses": { "subjects": [ "05C78", "05C69" ], "keywords": [ "local antimagic chromatic number", "tripartite graphs", "incident edge label", "local antimagc labeling" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }