{ "id": "2408.05103", "version": "v1", "published": "2024-08-09T14:46:51.000Z", "updated": "2024-08-09T14:46:51.000Z", "title": "Koszul duality for generalized steinberg representations of $p$-adic groups", "authors": [ "Clifton Cunningham", "James Steele" ], "comment": "22 pages, no figures", "categories": [ "math.RT" ], "abstract": "In this paper we prove a novel result on two categories that appear in the local Langlands correspondence, for generalized Steinberg representations. Let $G$ be a semisimple reductive group split over a $p$-adic field $F$. The main result of this paper shows that category of modules over the extension algebra of generalized Steinberg representations of $G(F)$ appears as a full subcategory of equivariant perverse sheaves on the variety of Langlands parameters for these representations.", "revisions": [ { "version": "v1", "updated": "2024-08-09T14:46:51.000Z" } ], "analyses": { "subjects": [ "11F70", "22E50", "35A27", "32S30" ], "keywords": [ "generalized steinberg representations", "koszul duality", "adic groups", "local langlands correspondence", "equivariant perverse sheaves" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }