{ "id": "2408.04548", "version": "v1", "published": "2024-08-08T15:56:25.000Z", "updated": "2024-08-08T15:56:25.000Z", "title": "Nonuniversality in random criticality", "authors": [ "Gesualdo Delfino" ], "categories": [ "cond-mat.stat-mech", "cond-mat.dis-nn", "hep-th" ], "abstract": "We consider $N$ two-dimensional Ising models coupled in presence of quenched disorder and use scale invariant scattering theory to exactly show the presence of a line of renormalization group fixed points for any fixed value of $N$ other than 1. We show how this result relates to perturbative studies and sheds light on numerical simulations. We also observe that the limit $N\\to 1$ may be of interest for the Ising spin glass, and point out potential relevance for nonuniversality in other contexts of random criticality.", "revisions": [ { "version": "v1", "updated": "2024-08-08T15:56:25.000Z" } ], "analyses": { "keywords": [ "random criticality", "nonuniversality", "renormalization group fixed points", "scale invariant scattering theory", "result relates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }