{ "id": "2408.03853", "version": "v1", "published": "2024-08-07T15:50:32.000Z", "updated": "2024-08-07T15:50:32.000Z", "title": "Recurrence of multidimensional affine recursions in the critical case", "authors": [ "Richard Aoun", "Sara Brofferio", "Marc Peigné" ], "comment": "27 pages", "categories": [ "math.PR" ], "abstract": "We prove, under different natural hypotheses, that the random multidimensional affine recursion $X_n=A_nX_{n-1}+B_n\\in\\mathbb{R}^d, n \\geq 1,$ is recurrent in the critical case. In particular we cover the cases where the matrices $A_n$ are similarities, invertible, rank 1 or with non negative coefficients. These results are a consequence of a criterion of recurrence for a large class of affine recursions on $\\mathbb R^d$, based on some moment assumptions of the so-called ``reverse norm control random variable\".", "revisions": [ { "version": "v1", "updated": "2024-08-07T15:50:32.000Z" } ], "analyses": { "subjects": [ "60J80", "60F17", "60K37" ], "keywords": [ "critical case", "recurrence", "random multidimensional affine recursion", "reverse norm control random variable", "non negative coefficients" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }