{ "id": "2408.02485", "version": "v1", "published": "2024-08-05T14:05:52.000Z", "updated": "2024-08-05T14:05:52.000Z", "title": "Categorical Heisenberg action I: rational Cherednik algebras", "authors": [ "Roman Bezrukavnikov", "Ivan Losev" ], "comment": "52 pages", "categories": [ "math.RT" ], "abstract": "In this paper we introduce and study a categorical action of the positive part of the Heisenberg Lie algebra on categories of modules over rational Cherednik algebras associated to symmetric groups. We show that the generating functor for this action is exact. We then produce a categorical Heisenberg action on the categories $\\mathcal{O}$ and show it is the same as one constructed by Shan and Vasserot. Finally, we reduce modulo a large prime $p$. We show that the functors constituting the action of the positive half of the Heisenberg algebra send simple objects to semisimple ones, and we describe these semisimple objects.", "revisions": [ { "version": "v1", "updated": "2024-08-05T14:05:52.000Z" } ], "analyses": { "subjects": [ "16G99" ], "keywords": [ "rational cherednik algebras", "categorical heisenberg action", "heisenberg algebra send simple objects", "heisenberg lie algebra", "symmetric groups" ], "note": { "typesetting": "TeX", "pages": 52, "language": "en", "license": "arXiv", "status": "editable" } } }