{ "id": "2408.01555", "version": "v1", "published": "2024-08-02T20:05:19.000Z", "updated": "2024-08-02T20:05:19.000Z", "title": "Tightness for branching random walk in a space-inhomogeneous random environment", "authors": [ "Xaver Kriechbaum" ], "comment": "61 pages, 3 figures", "categories": [ "math.PR" ], "abstract": "We consider the maximum $M_t$ of branching random walk in a space-inhomogeneous random environment on $\\mathbb{Z}$. In this model the branching rate while at some location $x\\in\\mathbb{Z}$ is randomized in an i.i.d.\\@ manner. We prove that there is a centering $\\widetilde{m}_t$ depending only on the environment such that $(M_t-\\widetilde{m}_t)_{t\\ge 0}$ is tight in an annealed sense.", "revisions": [ { "version": "v1", "updated": "2024-08-02T20:05:19.000Z" } ], "analyses": { "subjects": [ "60J80" ], "keywords": [ "branching random walk", "space-inhomogeneous random environment", "branching rate", "annealed sense" ], "note": { "typesetting": "TeX", "pages": 61, "language": "en", "license": "arXiv", "status": "editable" } } }