{ "id": "2408.01238", "version": "v1", "published": "2024-08-02T12:58:02.000Z", "updated": "2024-08-02T12:58:02.000Z", "title": "A quantitative central limit theorem for the simple symmetric exclusion process", "authors": [ "Benjamin Gess", "Vitalii Konarovskyi" ], "comment": "67 pages", "categories": [ "math.PR" ], "abstract": "A quantitative central limit theorem for the simple symmetric exclusion process (SSEP) on a $d$-dimensional discrete torus is proven. The argument is based on a comparison of the generators of the density fluctuation field of the SSEP and the generalized Ornstein-Uhlenbeck process, as well as on an infinite-dimensional Berry-Essen bound for the initial particle fluctuations. The obtained rate of convergence is optimal.", "revisions": [ { "version": "v1", "updated": "2024-08-02T12:58:02.000Z" } ], "analyses": { "subjects": [ "60K35", "60F05", "60J25", "60H15" ], "keywords": [ "simple symmetric exclusion process", "quantitative central limit theorem", "initial particle fluctuations", "infinite-dimensional berry-essen bound", "dimensional discrete torus" ], "note": { "typesetting": "TeX", "pages": 67, "language": "en", "license": "arXiv", "status": "editable" } } }