{ "id": "2408.01213", "version": "v1", "published": "2024-08-02T11:57:26.000Z", "updated": "2024-08-02T11:57:26.000Z", "title": "Differential symmetry breaking operators from a line bundle to a vector bundle over real projective spaces", "authors": [ "Toshihisa Kubo" ], "comment": "52 pages", "categories": [ "math.RT", "math.DG" ], "abstract": "In this paper we classify and construct differential symmetry breaking operators $\\mathbb{D}$ from a line bundle over the real projective space $\\mathbb{R}\\mathbb{P}^n$ to a vector bundle over $\\mathbb{R}\\mathbb{P}^{n-1}$. We further determine the factorization identities of $\\mathbb{D}$ and the branching laws of the corresponding generalized Verma modules of $\\mathfrak{sl}(n+1,\\mathbb{C})$. By utilizing the factorization identities, the $SL(n,\\mathbb{R})$-representations realized on the image $\\text{Im}(\\mathbb{D})$ are also investigated.", "revisions": [ { "version": "v1", "updated": "2024-08-02T11:57:26.000Z" } ], "analyses": { "subjects": [ "22E46", "17B10" ], "keywords": [ "real projective space", "line bundle", "vector bundle", "factorization identities", "construct differential symmetry breaking operators" ], "note": { "typesetting": "TeX", "pages": 52, "language": "en", "license": "arXiv", "status": "editable" } } }