{ "id": "2408.01104", "version": "v1", "published": "2024-08-02T08:28:54.000Z", "updated": "2024-08-02T08:28:54.000Z", "title": "Parametrized Families of Gibbs Measures and their Statistical Inference", "authors": [ "Manfred Denker", "Marc Keßeböhmer", "Artur O. Lopes", "Silvia R. C. Lopes" ], "comment": "37 pages", "categories": [ "math.DS", "math.ST", "stat.TH" ], "abstract": "For H\\\"older continuous functions $f_i$, $i=0,\\ldots ,d$, on a subshift of finite type and $\\Theta\\subset \\mathbb \\R^d$ we consider a parametrized family of potentials $\\{F_\\theta= f_0+\\sum_{i=1}^d \\theta_i f_i : \\theta\\in \\Theta\\}$. We show that the maximum likelihood estimator of $\\theta$ for a family of Gibbs measures with potentials $F_\\theta$ is consistent and determine its asymptotic distribution under the associated shift-invariant distribution. A second part discusses applications; from confidence intervals through testing problems to connections to Bernoulli distributions and stationary Markov chains.", "revisions": [ { "version": "v1", "updated": "2024-08-02T08:28:54.000Z" } ], "analyses": { "subjects": [ "62F02", "62F12", "62E20", "37A50", "37A10" ], "keywords": [ "gibbs measures", "statistical inference", "parametrized family", "second part discusses applications", "stationary markov chains" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable" } } }