{ "id": "2407.20781", "version": "v1", "published": "2024-07-30T12:34:14.000Z", "updated": "2024-07-30T12:34:14.000Z", "title": "Universality lifting from a general base field", "authors": [ "Vitezslav Kala", "Daejun Kim", "Seok Hyeong Lee" ], "comment": "17 pages", "categories": [ "math.NT" ], "abstract": "Given a totally real number field $F$, we show that there are only finitely many totally real extensions of $K$ of a fixed degree that admit a universal quadratic form defined over $F$. We further obtain several explicit classification results in the case of relative quadratic extensions.", "revisions": [ { "version": "v1", "updated": "2024-07-30T12:34:14.000Z" } ], "analyses": { "subjects": [ "11E12", "11E20", "11R04", "11R80", "11H06" ], "keywords": [ "general base field", "universality lifting", "totally real number field", "explicit classification results", "universal quadratic form" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }