{ "id": "2407.20583", "version": "v1", "published": "2024-07-30T06:30:35.000Z", "updated": "2024-07-30T06:30:35.000Z", "title": "Jacobi sums and cyclotomic matrices involving squares over finite fields", "authors": [ "Hai-Liang Wu", "Li-Yuan Wang" ], "categories": [ "math.NT" ], "abstract": "Let $q=p^n$ be an odd prime power and let $\\mathbb{F}_q$ be the finite field of $q$ elements. Let $\\widehat{\\mathbb{F}_q^{\\times}}$ be the group of all multiplicative characters of $\\mathbb{F}_q$ and let $\\chi$ be a generator of $\\widehat{\\mathbb{F}_q^{\\times}}$. In this paper, we investigate arithmetic properties of certain cyclotomic matrices involving nonzero squares over $\\mathbb{F}_q$. For example, let $s_1,s_2,\\cdots,s_{(q-1)/2}$ be the nonzero squares over $\\mathbb{F}_q$. For any integer $1\\le r\\le q-2$, define the matrix $$B_q(r):=\\left[\\chi^r(s_i+s_j)+\\chi^r(s_i-s_j)\\right]_{1\\le i,j\\le (q-1)/2}.$$ We prove that if $q\\equiv 3\\pmod 4$, then $$\\det (B_q(r))=\\prod_{0\\le k\\le (q-3)/2}J_q(\\chi^r,\\chi^{2k})= \\begin{cases} (-1)^{\\frac{q-3}{4}}{\\bf i}^nG_q(\\chi^r)^{\\frac{q-1}{2}}/\\sqrt{q} & \\mbox{if}\\ r\\equiv 1\\pmod 2, G_q(\\chi^r)^{\\frac{q-1}{2}}/q & \\mbox{if}\\ r\\equiv 0\\pmod 2. \\end{cases},$$ where $J_q(\\chi^r,\\chi^{2k})$ and $G_q(\\chi^r)$ are the Jacobi sum and the Gauss sum over $\\mathbb{F}_q$ respectively.", "revisions": [ { "version": "v1", "updated": "2024-07-30T06:30:35.000Z" } ], "analyses": { "keywords": [ "jacobi sum", "cyclotomic matrices", "finite field", "nonzero squares", "odd prime power" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }