{ "id": "2407.20509", "version": "v1", "published": "2024-07-30T02:53:42.000Z", "updated": "2024-07-30T02:53:42.000Z", "title": "Interpolant of truncated multiple zeta functions", "authors": [ "Kentaro Ihara", "Yayoi Nakamura", "Shuji Yamamoto" ], "categories": [ "math.NT" ], "abstract": "We introduce an analytic function $\\Psi(s_1,\\ldots,s_r;w)$ that interpolates truncated multiple zeta functions $\\zeta_N(s_1,\\ldots,s_r)$. We represent this interpolant as a Mellin transform of a function $G(q_1,\\ldots,q_r;w)$ and, using this expression, give the analytic continuation. Further, the harmonic product relations for $\\Psi$ and $G$ are established via relevant Hopf algebra structures, and some properties of the function $G$ are provided.", "revisions": [ { "version": "v1", "updated": "2024-07-30T02:53:42.000Z" } ], "analyses": { "keywords": [ "interpolant", "relevant hopf algebra structures", "interpolates truncated multiple zeta functions", "harmonic product relations", "analytic continuation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }