{ "id": "2407.20191", "version": "v1", "published": "2024-07-29T17:19:11.000Z", "updated": "2024-07-29T17:19:11.000Z", "title": "Three-dimensional inverse acoustic scattering problem by the BC-method", "authors": [ "M. I. Belishev", "A. F. Vakulenko" ], "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "The forward acoustic scattering problem that we deal with, is to find $u=u^f(x,t)$ satisfying \\begin{align*} &u_{tt}-\\Delta u+qu=0, && (x,t) \\in {\\mathbb R}^3 \\times (-\\infty,\\infty); \\\\ &u \\mid_{|x|<-t} =0 , && t<0;\\\\ &\\lim_{s \\to -\\infty} s\\,u((-s+\\tau)\\,\\omega,s)=f(\\tau,\\omega), && (\\tau,\\omega) \\in \\Sigma:=[0,\\infty)\\times S^2; \\end{align*} for a real valued compactly supported potential $q=q(x)$ and a control $f \\in L_2(\\Sigma)$. The map $R: L_2(\\Sigma)\\to L_2(\\Sigma)$, \\begin{align*} & (Rf)(\\tau ,\\omega )\\,:= \\lim_{s \\to +\\infty} s\\, u^f((s+\\tau )\\,\\omega ,s), \\quad (\\tau ,\\omega ) \\in \\Sigma \\end{align*} is a response operator. The inverse problem is to determine $q$ from $R$. It is solved by a relevant version of the boundary control method. The procedure that recovers the potential is local: for any fixed $\\xi>0$, given $R\\upharpoonright\\{f\\in L_2(\\Sigma)\\,|\\,\\,f\\mid_{0\\leqslant \\tau<\\xi}=0\\}$ it determines $q\\big|_{|x|\\geqslant\\xi}$.", "revisions": [ { "version": "v1", "updated": "2024-07-29T17:19:11.000Z" } ], "analyses": { "subjects": [ "35Q93", "35L05", "78A45" ], "keywords": [ "three-dimensional inverse acoustic scattering problem", "boundary control method", "response operator", "forward acoustic scattering problem", "real valued compactly supported potential" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }