{ "id": "2407.20102", "version": "v1", "published": "2024-07-29T15:29:43.000Z", "updated": "2024-07-29T15:29:43.000Z", "title": "On the best coapproximation problem in $\\ell_1^n$", "authors": [ "Debmalya Sain", "Shamim Sohel", "Souvik Ghosh", "Kallol Paul" ], "journal": "Linear and Multilinear Algebra 72(1)(2022)31-49", "doi": "10.1080/03081087.2022.2153101", "categories": [ "math.FA" ], "abstract": "We study the best coapproximation problem in the Banach space $ \\ell_1^n, $ by using Birkhoff-James orthogonality techniques. Given a subspace $\\mathbb{{Y}}$ of $\\ell_1^n$, we completely identify the elements $x$ in $\\ell_1^n,$ for which best coapproximations to $x$ out of $\\mathbb{{Y}}$ exist. The methods developed in this article are computationally effective and it allows us to present an algorithmic approach to the concerned problem. We also identify the coproximinal subspaces and co-Chebyshev subspaces of $\\ell_1^n$.", "revisions": [ { "version": "v1", "updated": "2024-07-29T15:29:43.000Z" } ], "analyses": { "subjects": [ "46B20", "47L05" ], "keywords": [ "best coapproximation problem", "birkhoff-james orthogonality techniques", "banach space", "co-chebyshev subspaces", "coproximinal subspaces" ], "tags": [ "journal article" ], "publication": { "publisher": "Taylor-Francis" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }