{ "id": "2407.19504", "version": "v1", "published": "2024-07-28T14:31:38.000Z", "updated": "2024-07-28T14:31:38.000Z", "title": "Quantitative comparison results for first-order Hamilton-Jacobi equations", "authors": [ "Vincenzo Amato", "Luca Barbato" ], "categories": [ "math.AP" ], "abstract": "In this paper, we prove a quantitative version of the comparison result for solutions to first-order Hamilton-Jacobi equations proved in \\cite{GN}. The key role is played by quantitative versions of the P\\'olya-Szeg\\H o inequality and of the Hardy-Littlewood inequality.", "revisions": [ { "version": "v1", "updated": "2024-07-28T14:31:38.000Z" } ], "analyses": { "subjects": [ "35F21", "35B35", "35B51" ], "keywords": [ "first-order hamilton-jacobi equations", "quantitative comparison results", "quantitative version", "hardy-littlewood inequality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }