{ "id": "2407.19366", "version": "v1", "published": "2024-07-28T02:24:44.000Z", "updated": "2024-07-28T02:24:44.000Z", "title": "Stability of the Caffarelli-Kohn-Nirenberg inequality along Felli-Schneider curve: critical points at infinity", "authors": [ "Juncheng Wei", "Yunze Wu" ], "comment": "72 pages; comments welcome!", "categories": [ "math.AP" ], "abstract": "In this paper, we consider the following Caffarelli-Kohn-Nirenberg (CKN for short) inequality \\begin{eqnarray*} \\bigg(\\int_{{\\mathbb R}^d}|x|^{-b(p+1)}|u|^{p+1}dx\\bigg)^{\\frac{2}{p+1}}\\leq S_{a,b}\\int_{{\\mathbb R}^d}|x|^{-2a}|\\nabla u|^2dx, \\end{eqnarray*} where $u\\in D^{1,2}_{a}({\\mathbb R}^d)$, $d\\geq2$, $p=\\frac{d+2(1+a-b)}{d-2(1+a-b)}$ and \\begin{eqnarray}\\label{eq0003} \\left\\{\\aligned &a