{ "id": "2407.19141", "version": "v1", "published": "2024-07-27T01:20:05.000Z", "updated": "2024-07-27T01:20:05.000Z", "title": "Asymptotic profile of least energy solutions to the nonlinear Schrödinger-Bopp-Podolsky system", "authors": [ "Gustavo de Paula Ramos" ], "comment": "12 pages, comments are welcome", "categories": [ "math.AP" ], "abstract": "Consider the following nonlinear Schr\\\"odinger--Bopp--Podolsky system in $\\mathbb{R}^3$: \\[ \\begin{cases} - \\Delta v + v + \\phi v = v |v|^{p - 2}; \\\\ \\beta^2 \\Delta^2 \\phi - \\Delta \\phi = 4 \\pi v^2, \\end{cases} \\] where $\\beta > 0$ and $3 < p < 6$, the unknowns being $v$, $\\phi \\colon \\mathbb{R}^3 \\to \\mathbb{R}$. We prove that, as $\\beta \\to 0$ and up to translations and subsequences, least energy solutions to this system converge to a least energy solution to the following nonlinear Schr\\\"odinger--Poisson system in $\\mathbb{R}^3$: \\[ \\begin{cases} - \\Delta v + v + \\phi v = v |v|^{p - 2}; \\\\ - \\Delta \\phi = 4 \\pi v^2. \\end{cases} \\]", "revisions": [ { "version": "v1", "updated": "2024-07-27T01:20:05.000Z" } ], "analyses": { "keywords": [ "energy solution", "nonlinear schrödinger-bopp-podolsky system", "asymptotic profile", "system converge" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }