{ "id": "2407.17608", "version": "v1", "published": "2024-07-24T19:35:58.000Z", "updated": "2024-07-24T19:35:58.000Z", "title": "Asymptotic limit of cumulants and higher order free cumulants of complex Wigner matrices", "authors": [ "James A. Mingo", "Daniel Munoz George" ], "comment": "62 pages, 13 Figures", "categories": [ "math.PR" ], "abstract": "We compute the fluctuation moments $\\alpha_{m_1,\\dots,m_r}$ of a Complex Wigner Matrix $X_N$ given by the limit $\\lim_{N\\rightarrow\\infty}N^{r-2}k_r(Tr(X_N^{m_1}),\\dots,Tr(X_N^{m_r}))$. We prove the limit exists and characterize the leading order via planar graphs that result to be trees. We prove these graphs can be counted by the set of non-crossing partitioned permutations which permit us to express the moments $\\alpha_{m_1,\\dots,m_r}$ in terms of simpler quantities $\\overline{\\kappa}_{m_1,\\dots,m_r}$ which we call the pseudo-cumulants. We prove the pseudo-cumulants coincide with the higher order free cumulants up to $r=4$ which permit us to find the higher order free cumulants $\\kappa_{m_1,\\dots,m_r}$ associated to the moment sequence $\\alpha_{m_1,\\dots,m_r}$ up to order 4.", "revisions": [ { "version": "v1", "updated": "2024-07-24T19:35:58.000Z" } ], "analyses": { "subjects": [ "60B20", "46L54", "15B52" ], "keywords": [ "higher order free cumulants", "complex wigner matrix", "asymptotic limit", "fluctuation moments", "planar graphs" ], "note": { "typesetting": "TeX", "pages": 62, "language": "en", "license": "arXiv", "status": "editable" } } }