{ "id": "2407.17366", "version": "v1", "published": "2024-07-24T15:43:30.000Z", "updated": "2024-07-24T15:43:30.000Z", "title": "Automorphisms of the DAHA of type $\\check{C_1}C_1$ and their action on Askey-Wilson polynomials and functions. I. The flip $(a,b,c,d)\\mapsto(a,b,qd^{-1},qc^{-1})$", "authors": [ "Tom H. Koornwinder", "Marta Mazzocco" ], "comment": "34 pages", "categories": [ "math.CA", "math.RT" ], "abstract": "In this paper we consider the automorphisms of the double affine Hecke algebra (DAHA) of type $\\check{C_1}C_1$ which have a relatively simple action on the generators and on the parameters, notably a symmetry $t_4$ which sends the Askey-Wilson parameters $(a,b,c,d)$ to $(a,b,qd^{-1},qc^{-1})$. We study how these symmetries act on the basic representation and on the symmetric and non-symmetric Askey-Wilson (AW) polynomials and functions. Interestingly $t_4$ maps AW polynomials to functions. In the second part of the paper we look for a version of non-symmetric AW functions that behave well under these symmetries.", "revisions": [ { "version": "v1", "updated": "2024-07-24T15:43:30.000Z" } ], "analyses": { "subjects": [ "16S99", "20C08", "33D45" ], "keywords": [ "askey-wilson polynomials", "automorphisms", "non-symmetric aw functions", "maps aw polynomials", "double affine hecke algebra" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }