{ "id": "2407.16937", "version": "v1", "published": "2024-07-24T02:16:21.000Z", "updated": "2024-07-24T02:16:21.000Z", "title": "A converse to a theorem of Gauss on Gauss sums", "authors": [ "Jonathan W. Bober", "Leo Goldmakher" ], "comment": "4 pages. Comments very welcome!", "categories": [ "math.NT", "math.RT" ], "abstract": "In this note we prove (under mild hypotheses) that $f$ is a nontrivial character of $\\mathbb{F}_p$ if and only if the Fourier transform of $f$ has magnitude 1 somewhere in $\\mathbb{F}_p^\\times$. This implies a converse to a theorem of Gauss on the magnitude of the Gauss sum, in addition to other consequences.", "revisions": [ { "version": "v1", "updated": "2024-07-24T02:16:21.000Z" } ], "analyses": { "subjects": [ "11L05", "11T24", "20C15" ], "keywords": [ "gauss sum", "mild hypotheses", "nontrivial character", "fourier transform" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }