{ "id": "2407.16120", "version": "v1", "published": "2024-07-23T02:03:28.000Z", "updated": "2024-07-23T02:03:28.000Z", "title": "Extensions of the Bloch -- Pólya Theorem on the number of real zeros of polynomials (II)", "authors": [ "Tamás Erdélyi" ], "categories": [ "math.NT", "math.CA" ], "abstract": "We prove that there are absolute constants $c_1 > 0$ and $c_2 > 0$ such that for every $$a_0,a_1, \\ldots,a_n \\in [1,M]\\,, \\qquad 1 \\leq M \\leq \\exp(c_2n)\\,,$$ there are $$b_0,b_1,\\ldots,b_n \\in \\{-1,0,1\\}$$ such that the polynomial $\\displaystyle{P(z) = \\sum_{j=0}^n{b_ja_jz^j}}$ has at least $$c_1 \\left( \\frac{n}{\\log(4M)} \\right)^{1/2}$$ distinct sign changes in $I_a := (1-2a,1-a)$, where $\\displaystyle{a := \\left( \\frac{\\log(4M)}{n} \\right)^{1/2} \\leq 1/3}$. This improves and extends earlier results of Bloch and P\\'olya and Erd\\'elyi, and, as a special case, recaptures a special case of a more general recent result of Jacob and Nazarov.", "revisions": [ { "version": "v1", "updated": "2024-07-23T02:03:28.000Z" } ], "analyses": { "subjects": [ "26C10", "12D10" ], "keywords": [ "real zeros", "pólya theorem", "polynomial", "extensions", "special case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }