{ "id": "2407.15774", "version": "v1", "published": "2024-07-22T16:26:03.000Z", "updated": "2024-07-22T16:26:03.000Z", "title": "Metric mean dimension, Hölder regularity and Assouad spectrum", "authors": [ "Alexandre Baraviera", "Maria Carvalho", "Gustavo Pessil" ], "categories": [ "math.DS" ], "abstract": "Metric mean dimension is a geometric invariant of dynamical systems with infinite topological entropy. We relate this concept with the fractal structure of the phase space and the H\\\"older regularity of the map. Afterwards we improve our general estimates in a family of interval maps by computing the metric mean dimension in a way similar to the Misiurewicz formula for the entropy, which in particular shows that our bounds are sharp. Of independent interest, we develop a dynamical analogue of Minkowski-Bouligand dimension for maps acting on Ahlfors regular spaces.", "revisions": [ { "version": "v1", "updated": "2024-07-22T16:26:03.000Z" } ], "analyses": { "keywords": [ "metric mean dimension", "hölder regularity", "assouad spectrum", "ahlfors regular spaces", "minkowski-bouligand dimension" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }