{ "id": "2407.15667", "version": "v1", "published": "2024-07-22T14:29:07.000Z", "updated": "2024-07-22T14:29:07.000Z", "title": "On even $K$-groups over $p$-adic Lie extensions of global function fields", "authors": [ "Meng Fai Lim" ], "comment": "12 pages", "categories": [ "math.NT" ], "abstract": "Let $p$ be a fixed prime number, and $F$ a global function field of characteristic not equal to $p$. In this paper, we shall study the growth of the Sylow $p$-subgroups of the even $K$-groups in a $p$-adic Lie extension of $F$, where the $p$-adic Lie extension is assumed to contain the cyclotomic $\\mathbb{Z}_p$-extension of $F$. We also establish a duality between the direct limit and inverse limit of the even $K$-groups.", "revisions": [ { "version": "v1", "updated": "2024-07-22T14:29:07.000Z" } ], "analyses": { "keywords": [ "adic lie extension", "global function field", "fixed prime number", "direct limit", "inverse limit" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }