{ "id": "2407.15454", "version": "v1", "published": "2024-07-22T08:12:52.000Z", "updated": "2024-07-22T08:12:52.000Z", "title": "The Dowker theorem via discrete Morse theory", "authors": [ "Morten Brun", "Darij Grinberg" ], "comment": "20 pages. Comments are appreciated!", "categories": [ "math.CO", "math.AT" ], "abstract": "The Dowker theorem is a classical result in the topology of finite spaces, claiming that any binary relation between two finite spaces defines two homotopy-equivalent complexes (the Dowker complexes). Recently, Barmak strengthened this to a simple-homotopy-equivalence. We reprove Barmak's result using a combinatorial argument that constructs an explicit acyclic matching in the sense of discrete Morse theory.", "revisions": [ { "version": "v1", "updated": "2024-07-22T08:12:52.000Z" } ], "analyses": { "subjects": [ "57Q10", "55-01", "55U10" ], "keywords": [ "discrete morse theory", "dowker theorem", "finite spaces defines", "reprove barmaks result", "explicit acyclic" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }