{ "id": "2407.14964", "version": "v1", "published": "2024-07-20T19:01:02.000Z", "updated": "2024-07-20T19:01:02.000Z", "title": "Projective geometries, $Q$-polynomial structures, and quantum groups", "authors": [ "Paul Terwilliger" ], "comment": "30 pages", "categories": [ "math.CO", "math.QA" ], "abstract": "In 2023 we obtained a $Q$-polynomial structure for the projective geometry $L_N(q)$. In the present paper, we display a more general $Q$-polynomial structure for $L_N(q)$. Our new $Q$-polynomial structure is defined using a free parameter $\\varphi$ that takes any positive real value. For $\\varphi=1$ we recover the original $Q$-polynomial structure. We interpret the new $Q$-polynomial structure using the quantum group $U_{q^{1/2}}(\\mathfrak{sl}_2)$ in the equitable presentation. We use the new $Q$-polynomial structure to obtain analogs of the four split decompositions that appear in the theory of $Q$-polynomial distance-regular graphs.", "revisions": [ { "version": "v1", "updated": "2024-07-20T19:01:02.000Z" } ], "analyses": { "subjects": [ "05E30" ], "keywords": [ "polynomial structure", "quantum group", "projective geometry", "polynomial distance-regular graphs", "positive real value" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }