{ "id": "2407.14264", "version": "v1", "published": "2024-07-19T12:40:46.000Z", "updated": "2024-07-19T12:40:46.000Z", "title": "Galois representations are surjective for almost all Drinfeld modules", "authors": [ "Anwesh Ray" ], "comment": "Version 1: 16 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "This article advances the results of Duke on the average surjectivity of Galois representations for elliptic curves to the context of Drinfeld modules over function fields. Let $F$ be the rational function field over a finite field. I establish that for Drinfeld modules of rank $r \\geq 2$, the $T$-adic Galois representation: $\\widehat{\\rho}_{\\phi, T}: Gal(F^{sep}/F) \\rightarrow GL_r(\\mathbb{F}_q[[T]])$ is surjective for a density $1$ set of such modules. The proof utilizes Hilbert irreducibility (over function fields), Drinfeld's uniformization theory and sieve methods.", "revisions": [ { "version": "v1", "updated": "2024-07-19T12:40:46.000Z" } ], "analyses": { "subjects": [ "11F80", "11G09", "11R45" ], "keywords": [ "drinfeld modules", "proof utilizes hilbert irreducibility", "surjective", "adic galois representation", "rational function field" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }