{ "id": "2407.14099", "version": "v1", "published": "2024-07-19T08:12:23.000Z", "updated": "2024-07-19T08:12:23.000Z", "title": "Modified Macdonald polynomials and Mahonian statistics", "authors": [ "Emma Yu Jin", "Xiaowei Lin" ], "comment": "25 Pages", "categories": [ "math.CO" ], "abstract": "We establish an equidistribution between the pairs (inv,maj) and (quinv,maj) on any row-equivalency class $[\\tau]$ where $\\tau$ is a filling of a given Young diagram. In particular if $\\tau$ is a filling of a rectangular diagram, the triples (inv,quinv,maj) and (quinv,inv,maj) have the same distribution over $[\\tau]$. Our main result affirms a conjecture proposed by Ayyer, Mandelshtam and Martin (2021), thus presenting the equivalence between two refined formulas for the modified Macdonald polynomials.", "revisions": [ { "version": "v1", "updated": "2024-07-19T08:12:23.000Z" } ], "analyses": { "subjects": [ "05E05", "05A19" ], "keywords": [ "modified macdonald polynomials", "mahonian statistics", "main result affirms", "row-equivalency class", "rectangular diagram" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }