{ "id": "2407.14084", "version": "v1", "published": "2024-07-19T07:38:57.000Z", "updated": "2024-07-19T07:38:57.000Z", "title": "A Purely Entropic Approach to the Rainbow Triangle Problem", "authors": [ "Ting-Wei Chao", "Hung-Hsun Hans Yu" ], "comment": "5 pages, 5 figures", "categories": [ "math.CO", "cs.IT", "math.IT" ], "abstract": "In this short note, we present a purely entropic proof that in a $3$-edge-colored simple graph with $R$ red edges, $G$ green edges, and $B$ blue edges, the number of rainbow triangles is at most $\\sqrt{2RGB}$.", "revisions": [ { "version": "v1", "updated": "2024-07-19T07:38:57.000Z" } ], "analyses": { "subjects": [ "05D05", "05D40", "94A17" ], "keywords": [ "rainbow triangle problem", "purely entropic approach", "short note", "green edges", "purely entropic proof" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }