{ "id": "2407.13936", "version": "v1", "published": "2024-07-18T23:29:32.000Z", "updated": "2024-07-18T23:29:32.000Z", "title": "Uniform asymptotic expansions for the zeros of parabolic cylinder functions", "authors": [ "T. M. Dunster", "A. Gil", "D. Ruiz-Antolin", "J. Segura" ], "categories": [ "math.CA" ], "abstract": "The real and complex zeros of the parabolic cylinder function $U(a,z)$ are studied. Asymptotic expansions for the zeros are derived, involving the zeros of Airy functions, and these are valid for $a$ positive or negative and large in absolute value, uniformly for unbounded $z$ (real or complex). The accuracy of the approximations of the complex zeros is then demonstrated with some comparative tests using a highly precise numerical algorithm for finding the complex zeros of the function.", "revisions": [ { "version": "v1", "updated": "2024-07-18T23:29:32.000Z" } ], "analyses": { "subjects": [ "33C15", "33C45", "34E20", "34C10", "33F05" ], "keywords": [ "parabolic cylinder function", "uniform asymptotic expansions", "complex zeros", "airy functions", "absolute value" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }