{ "id": "2407.13464", "version": "v1", "published": "2024-07-18T12:37:35.000Z", "updated": "2024-07-18T12:37:35.000Z", "title": "Critical values of $L$-functions of residual representations of $\\mathrm{GL}_4$", "authors": [ "Johannes Droschl" ], "categories": [ "math.NT" ], "abstract": "In this paper we prove rationality results of critical values for $L$-functions attached to representations in the residual spectrum of $\\mathrm{GL}_4(\\mathbb{A})$. We use the Jacquet-Langlands correspondence to describe their partial $L$-functions via cuspidal automorphic representations of the group $\\mathrm{GL}_2'(\\mathbb{A})$ over a quaternion algebra. Using ideas inspired by results of Grobner and Raghuram we are then able to compute the critical values as a Shalika period up to a rational multiple.", "revisions": [ { "version": "v1", "updated": "2024-07-18T12:37:35.000Z" } ], "analyses": { "subjects": [ "11F67", "11F70", "11F75" ], "keywords": [ "critical values", "residual representations", "cuspidal automorphic representations", "rational multiple", "jacquet-langlands correspondence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }