{ "id": "2407.12546", "version": "v1", "published": "2024-07-17T13:28:32.000Z", "updated": "2024-07-17T13:28:32.000Z", "title": "Minimal equivariant embeddings of the Grassmannian and flag manifold", "authors": [ "Lek-Heng Lim", "Ke Ye" ], "comment": "11 pages", "categories": [ "math.RT", "math.DG" ], "abstract": "We show that the flag manifold $\\operatorname{Flag}(k_1,\\dots, k_p, \\mathbb{R}^n)$, with Grassmannian the special case $p=1$, has an $\\operatorname{SO}_n(\\mathbb{R})$-equivariant embedding in an Euclidean space of dimension $(n-1)(n+2)/2$, two orders of magnitude below the current best known result. We will show that the value $(n-1)(n+2)/2$ is the smallest possible and that any $\\operatorname{SO}_n(\\mathbb{R})$-equivariant embedding of $\\operatorname{Flag}(k_1,\\dots, k_p, \\mathbb{R}^n)$ in an ambient space of minimal dimension is equivariantly equivalent to the aforementioned one.", "revisions": [ { "version": "v1", "updated": "2024-07-17T13:28:32.000Z" } ], "analyses": { "subjects": [ "14M15", "57R40", "57S25", "14R20", "22E46", "22E70" ], "keywords": [ "minimal equivariant embeddings", "flag manifold", "grassmannian", "ambient space", "minimal dimension" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }