{ "id": "2407.11841", "version": "v1", "published": "2024-07-16T15:24:10.000Z", "updated": "2024-07-16T15:24:10.000Z", "title": "Asymptotic Analysis of Boundary Layers for Stokes Systems in Periodic Homogenization", "authors": [ "Moustapha Agne" ], "categories": [ "math.AP" ], "abstract": "We investigate the asymptotics of boundary layers in periodic homogenization. The analysis is focused on a Stokes system with periodic coefficients and periodic Dirichlet data posed in the half-space $\\{y\\in \\mathbb{R}^d: y\\cdot n -s>0\\}$. In particular, we establish the convergence of the velocity as $y\\cdot n \\rightarrow \\infty$. We obtain this convergence for arbitrary normals $n\\in \\mathbb{S}^{d-1}$. Moreover, we build an asymptotic expansion of Poisson's kernel for the periodically oscillating Stokes operator in the half-space.", "revisions": [ { "version": "v1", "updated": "2024-07-16T15:24:10.000Z" } ], "analyses": { "keywords": [ "periodic homogenization", "boundary layers", "stokes system", "asymptotic analysis", "periodic dirichlet data" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }