{ "id": "2407.11525", "version": "v1", "published": "2024-07-16T09:07:24.000Z", "updated": "2024-07-16T09:07:24.000Z", "title": "On a Theorem of Nathanson on Diophantine Approximation", "authors": [ "Jaroslav HanĨl", "Tho Phuoc Nguyen" ], "categories": [ "math.NT" ], "abstract": "In 1974, M. B. Nathanson proved that every irrational number $\\alpha$ represented by a simple continued fraction with infinitely many elements greater than or equal to $k$ is approximable by an infinite number of rational numbers $p/q$ satisfying $|\\alpha-p/q|<1/(\\sqrt{k^2+4}q^2)$. In this paper we refine this result.", "revisions": [ { "version": "v1", "updated": "2024-07-16T09:07:24.000Z" } ], "analyses": { "subjects": [ "11J82", "11A55" ], "keywords": [ "diophantine approximation", "simple continued fraction", "irrational number", "elements greater", "infinite number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }