{ "id": "2407.11166", "version": "v1", "published": "2024-07-15T18:38:31.000Z", "updated": "2024-07-15T18:38:31.000Z", "title": "On a Theorem of Legendre on Diophantine Approximation", "authors": [ "Jaroslav HanĨl", "Tho Phuoc Nguyen" ], "categories": [ "math.NT" ], "abstract": "Legendre's theorem states that every irreducible fraction $\\frac{p}{q}$ which satisfies the inequality $\\left |\\alpha-\\frac{p}{q} \\right | < \\frac{1}{2q^2}$ is convergent to $\\alpha$. Later Barbolosi and Jager improved this theorem. In this paper we refine these results.", "revisions": [ { "version": "v1", "updated": "2024-07-15T18:38:31.000Z" } ], "analyses": { "subjects": [ "11J82", "11A55" ], "keywords": [ "diophantine approximation", "legendres theorem states", "inequality", "convergent" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }