{ "id": "2407.10511", "version": "v1", "published": "2024-07-15T08:07:12.000Z", "updated": "2024-07-15T08:07:12.000Z", "title": "Okutsu sequences in Henselian fields", "authors": [ "Enric Nart" ], "categories": [ "math.NT", "math.AC" ], "abstract": "For $(K,v)$ a Henselian valued field, let $\\theta\\in\\overline{K}$ with minimal polynomial $F$ over $K$. Okutsu sequences of $\\theta$ have been defined only when the extension $K(\\theta)/K$ is defectless. In this paper, we extend this concept to arbitrary $\\theta\\in\\overline{K}$ and we show that these objects are essentially equivalent to Okutsu frames of $F$ and to Mac Lane-Vaqui\\'e chains of the natural valuation on $K[x]$ induced by $\\theta$.", "revisions": [ { "version": "v1", "updated": "2024-07-15T08:07:12.000Z" } ], "analyses": { "keywords": [ "okutsu sequences", "henselian fields", "mac lane-vaquie chains", "natural valuation", "okutsu frames" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }