{ "id": "2407.10467", "version": "v1", "published": "2024-07-15T06:46:25.000Z", "updated": "2024-07-15T06:46:25.000Z", "title": "A lower bound of the crossing number of composite knots", "authors": [ "Ruifeng Qiu", "Chao Wang" ], "comment": "46 pages, 45 figures", "categories": [ "math.GT" ], "abstract": "Let $c(K)$ denote the crossing number of a knot $K$ and let $K_1\\# K_2$ denote the connected sum of two oriented knots $K_1$ and $K_2$. It is a very old unsolved question that whether $c(K_1\\# K_2)=c(K_1)+c(K_2)$. In this paper we show that $c(K_1\\# K_2)> (c(K_1)+c(K_2))/16$.", "revisions": [ { "version": "v1", "updated": "2024-07-15T06:46:25.000Z" } ], "analyses": { "subjects": [ "57M25", "57N10" ], "keywords": [ "crossing number", "lower bound", "composite knots", "old unsolved question" ], "note": { "typesetting": "TeX", "pages": 46, "language": "en", "license": "arXiv", "status": "editable" } } }