{ "id": "2407.10398", "version": "v1", "published": "2024-07-15T02:37:39.000Z", "updated": "2024-07-15T02:37:39.000Z", "title": "Proof of Lew's conjecture on the spectral gap of simplicial complex", "authors": [ "Xiongfeng Zhan", "Xueyi Huang", "Huiqiu Lin" ], "comment": "14 pages", "categories": [ "math.CO" ], "abstract": "Let $X$ be a simplicial complex on vertex set $V$ of size $n$. Let $X(k)$ denote the set of all $k$-dimensional simplices of $X$, and $\\mathrm{deg}_X(\\sigma)=|\\{\\eta\\in X(k+1):\\sigma\\subseteq \\eta\\}|$ denote the degree of $\\sigma \\in X$. A missing face in $X$ is a subset $\\sigma$ of $V$ such that $\\sigma\\notin X$ but $\\tau\\in X$ for any proper subset $\\tau$ of $\\sigma$. Let $d$ denote the maximal dimension of a missing face of $X$, and $\\mu_k(X)$ denote the $k$-th spectral gap of $X$, i.e., the smallest eigenvalue of the reduced $k$-dimensional Laplacian of $X$. In [J. Combin. Theory Ser. A 169 (2020) 105127], Lew established a lower bound for $\\mu_k(X)$: $$\\mu_k(X)\\geq (d+1)\\left(\\min_{\\sigma\\in X(k)}\\mathrm{deg}_X(\\sigma)+k+1\\right)-dn\\geq (d+1)(k+1)-dn,$$ and further conjectured that if $\\mu_k(X)=(d+1)(k+1)-dn$ for some $k$, then $X\\cong (\\Delta_d^{(d-1)})^{*(n-k-1)}*\\Delta_{(d+1)(k+1)-dn-1}$. In this paper, we confirm Lew's conjecture.", "revisions": [ { "version": "v1", "updated": "2024-07-15T02:37:39.000Z" } ], "analyses": { "subjects": [ "05E45" ], "keywords": [ "simplicial complex", "confirm lews conjecture", "th spectral gap", "missing face", "smallest eigenvalue" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }