{ "id": "2407.10111", "version": "v1", "published": "2024-07-14T07:47:28.000Z", "updated": "2024-07-14T07:47:28.000Z", "title": "On a characterization of probability distribution based on maxima of independent or max-independent random variables", "authors": [ "B. L. S. Prakasa Rao" ], "categories": [ "math.PR" ], "abstract": "Kotlarski (1978) proved a result on identification of the distributions of independent random variables $X,Y$ and $Z$ from the joint distribution of the bivariate random vector $(U,V)$ where $(U,V)= (\\max(X,Z),\\max(Y,Z)).$ We extend this result to the case $(U,V)=(\\max(X,aZ_1,bZ_2),\\max(Y,cZ_1,dZ_2))$ where $X,Y,Z_1,Z_2$ are independent or max-independent random variables, $Z_1$ and $Z_2$ are identically distributed and $a,b,c,d$ are known positive constants.", "revisions": [ { "version": "v1", "updated": "2024-07-14T07:47:28.000Z" } ], "analyses": { "subjects": [ "62E10" ], "keywords": [ "max-independent random variables", "probability distribution", "characterization", "bivariate random vector", "joint distribution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }