{ "id": "2407.06944", "version": "v1", "published": "2024-07-09T15:19:56.000Z", "updated": "2024-07-09T15:19:56.000Z", "title": "Additive energies of subsets of discrete cubes", "authors": [ "Xuancheng Shao" ], "comment": "17 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "For a positive integer $n \\geq 2$, define $t_n$ to be the smallest number such that the additive energy $E(A)$ of any subset $A \\subset \\{0,1,\\cdots,n-1\\}^d$ and any $d$ is at most $|A|^{t_n}$. Trivially we have $t_n \\leq 3$ and $$ t_n \\geq 3 - \\log_n\\frac{3n^3}{2n^3+n} $$ by considering $A = \\{0,1,\\cdots,n-1\\}^d$. In this note, we investigate the behavior of $t_n$ for large $n$ and obtain the following non-trivial bounds: $$ 3 - (1+o_{n\\rightarrow\\infty}(1)) \\log_n \\frac{3\\sqrt{3}}{4} \\leq t_n \\leq 3 - \\log_n(1+c), $$ where $c>0$ is an absolute constant.", "revisions": [ { "version": "v1", "updated": "2024-07-09T15:19:56.000Z" } ], "analyses": { "subjects": [ "11B30" ], "keywords": [ "additive energy", "discrete cubes", "smallest number", "non-trivial bounds", "absolute constant" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }