{ "id": "2407.06907", "version": "v1", "published": "2024-07-09T14:42:44.000Z", "updated": "2024-07-09T14:42:44.000Z", "title": "Variability and the existence of rough integrals with irregular coefficients", "authors": [ "Michael Hinz", "Jonas M. Tölle", "Lauri Viitasaari" ], "comment": "13 pages, 27 references", "categories": [ "math.PR", "math.FA" ], "abstract": "Within the context of rough path analysis via fractional calculus, we show how the notion of variability can be used to prove the existence of integrals with respect to H\\\"older continuous multiplicative functionals in the case of Lipschitz coefficients with first order partial derivatives of bounded variation. We verify our condition for a class of Gaussian processes, including fractional Brownian motion with Hurst index $H\\in (\\frac13, \\frac12]$ in one and two dimensions.", "revisions": [ { "version": "v1", "updated": "2024-07-09T14:42:44.000Z" } ], "analyses": { "subjects": [ "26B30", "46E35", "60G15", "60G17", "60G22", "60L20", "26A33", "31B15", "42B20" ], "keywords": [ "irregular coefficients", "rough integrals", "variability", "first order partial derivatives", "fractional brownian motion" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }