{ "id": "2407.06873", "version": "v1", "published": "2024-07-09T14:02:22.000Z", "updated": "2024-07-09T14:02:22.000Z", "title": "The Functors $\\mathcal{F}^G_P$ over Local Fields of Positive Characteristic", "authors": [ "Georg Linden" ], "comment": "34 pages. Partially based on the author's PhD thesis arXiv:2304.03166v1. Comments welcome!", "categories": [ "math.RT", "math.NT" ], "abstract": "Let $G$ be a split connected reductive group over a non-archimedean local field. In the $p$-adic setting, Orlik-Strauch constructed functors from the BGG category $\\mathcal{O}$ associated to the Lie algebra of $G$ to the category of locally analytic representation of $G$. We generalize these functors to such groups over non-archimedean local fields of arbitrary characteristic. To this end, we introduce the hyperalgebra of a non-archimedean Lie group $G$, which generalizes its Lie algebra, and consider topological modules over the algebra of locally analytic distributions on $G$ and subalgebras related to this hyperalgebra.", "revisions": [ { "version": "v1", "updated": "2024-07-09T14:02:22.000Z" } ], "analyses": { "subjects": [ "22E50", "20G25", "22E35" ], "keywords": [ "positive characteristic", "non-archimedean local field", "lie algebra", "non-archimedean lie group", "orlik-strauch constructed functors" ], "tags": [ "dissertation" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }