{ "id": "2407.06724", "version": "v1", "published": "2024-07-09T09:57:06.000Z", "updated": "2024-07-09T09:57:06.000Z", "title": "Sharper bounds for the numerical radius of $n \\times n$ operator matrices II", "authors": [ "Pintu Bhunia" ], "comment": "11 pages", "categories": [ "math.FA" ], "abstract": "Let $A=[A_{ij}]$ be an $n\\times n$ operator matrix where each $A_{ij}$ is a bounded linear operator on a complex Hilbert space $\\mathcal{H}$. With other numerical radius bounds via contraction operators, we show that $w(A) \\leq w(\\tilde{A}),$ where $\\tilde{A}=[a_{ij}]$ is an $n\\times n$ complex matrix with \\begin{eqnarray*} a_{ij}=\\begin{cases} w(A_{ii}) \\quad \\text{if } i=j\\\\ \\underset{0\\leq t \\leq 1}{\\min} \\left\\| |A_{ij}|^{2t} + |A_{ji}^*|^{2t} \\right\\|^{1/2} \\left\\| |A_{ij}^*|^{2(1-t)}+ |A_{ji}|^{2(1-t)} \\right\\|^{1/2} \\quad \\text{if } i< j 0 \\quad \\text{if } i> j. \\end{cases} \\end{eqnarray*} This bound refines the well known bound $w(A) \\leq w(\\hat{A}),$ where $\\hat{A}=[\\hat{a}_{ij}]$ is an $n\\times n$ matrix with $\\hat{a}_{ij}= w(A_{ii}) $ \\text{if } $i=j$ and $\\hat{a}_{ij}= \\|A_{ij}\\| $ \\text{if } $i\\neq j$ [Linear Algebra Appl. 468 (2015), 18--26]. We deduce that if $A$, $B$ are bounded linear operators on $\\mathcal{H},$ then \\begin{eqnarray*} w\\left(\\begin{bmatrix} 0&A\\\\ B&0 \\end{bmatrix}\\right) \\leq \\frac12 \\left\\| |A|^{2t} + |B^*|^{2t} \\right\\|^{1/2} \\left\\| |A^*|^{2(1-t)}+ |B|^{2(1-t)} \\right\\|^{1/2} \\quad \\text{for all } t\\in [0,1]. \\end{eqnarray*} Further by applying the numerical radius bounds of operator matrices, we deduce some numerical radius bounds for a single operator, the product of two operators, the commutator of operators. We show that if $A$ is a bounded linear operator on $\\mathcal{H},$ then $w(A) \\leq \\frac12 \\|A\\|^t \\left\\| |A|^{1-t}+|A^*|^{1-t} \\right\\| \\quad \\text{for all } t\\in [0,1],$ which refines as well as generalizes the existing ones.", "revisions": [ { "version": "v1", "updated": "2024-07-09T09:57:06.000Z" } ], "analyses": { "subjects": [ "47A12", "47A30", "15A60", "47A63" ], "keywords": [ "operator matrix", "numerical radius bounds", "bounded linear operator", "sharper bounds", "complex hilbert space" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }