{ "id": "2407.05373", "version": "v1", "published": "2024-07-07T13:55:38.000Z", "updated": "2024-07-07T13:55:38.000Z", "title": "Monotonicity of the set of zeros of the Lyapunov exponent with respect to shift embeddings", "authors": [ "Oleg Safronov" ], "categories": [ "math-ph", "math.MP" ], "abstract": "We consider the discrete Schr\\\"odinger operators with potentials whose values are read along the orbits of a shift of finite type. We study a certain subset of the collection of energies at which the Lyapunov exponent is zero and prove monotonicity of this set with respect to the shift embeddings. Then we introduce a certain function ${\\mathcal J}(A,\\mu)$ determined by the position of these zeros and prove monotonicity of ${\\mathcal J}(A,\\mu)$ with respect to embeddings.", "revisions": [ { "version": "v1", "updated": "2024-07-07T13:55:38.000Z" } ], "analyses": { "subjects": [ "34L05" ], "keywords": [ "lyapunov exponent", "shift embeddings", "monotonicity", "finite type", "potentials" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }